

Cattle Producer's Handbook

Animal Health Section

609

Analysis of Water Quality for Livestock

*Clell V. Bagley, D.V.M., Extension Veterinarian
Janice Kotuby-Amacher, Director of USU Analytical Laboratories
Kitt Farrell-Poe, Extension Specialist, Water Quality
Utah State University*

Animals are able to ingest a wide variety of different types of water and survive. However, some salts and elements at high levels may reduce animal growth and production, or may cause illness and death.

The measures used to evaluate water quality include salinity, hardness, pH, sulfate, nitrate, and analysis for other specific elements known to be toxic. Waters can be evaluated for these characteristics at university or commercial laboratories. Microbiological agents (bacterial, viral, and protozoan) can be spread through water and cause disease. These are not usually evaluated in livestock waters, but samples could be submitted to an animal disease diagnostic laboratory for culture. Only certain laboratories are prepared to test for pesticides and organic toxins.

Salinity

Salinity refers to salts dissolved in water. The anions (negatively charged ions) commonly present include: carbonate, bicarbonate, sulfate, nitrate, chloride, phosphate, and fluoride. The cations (positively charged ions) include calcium, magnesium, sodium, and potassium.

Salinity may be measured as Total Dissolved Solids (TDS) or Total Soluble Salts (TSS), and is expressed as parts per million (ppm), which is equivalent to mg/l or ug/ml. Salinity may also be measured by electrical conductivity (EC), and is then expressed as reciprocal micro ohms per centimeter (umhos/cm) or decisiemens per meter (dS/m). There is a close correlation of EC and ppm with the values of ppm being about three-fifths of those for EC (@ 300 ppm, EC=500 umhos/cm and @ 3,000 ppm, EC=5,000 umhos/cm). The effects seem to be the same whether one or several salts are involved. The conversion factors are listed in Table 6.

An abrupt change from water of low salinity to water of high salinity may cause animals harm, while a gradual change would not. Animals can consume water of high salinity for a few days without harm, if they are then given water of low salinity. Animal tolerance also varies

with species, age, water requirement, season of the year, and physiological condition.

As the TDS of water increases, intake also increases, except at very high content where the animals refuse to drink. Depressed water intake is accompanied by depressed feed intake.

The ions of magnesium (Mg), calcium (Ca), sodium (Na), and chloride (Cl) all contribute to the salinity of water, and they may cause toxic effects because of this salinity effect or by interference with other elements, but these are not usually considered toxic otherwise.

Salinity by itself tells nothing about which elements are present, but this may be of critical importance. So when the salinity is elevated, the water should be analyzed for the specific anions and cations.

Tables 1 and 2 give guidelines on potential uses of water of various salinity.

Hardness

Water containing appreciable amounts of calcium and magnesium are called "hard" because it is hard to make such water lather with soap. The free calcium and magnesium react with soap to form an insoluble curd-like material. If they are removed, the water will lather easily.

Water "hardness" is not necessarily correlated with salinity. Saline waters can be very soft if they contain low levels of calcium and magnesium (the cations that cause hardness). Calcium and magnesium are usually present at less than 1,000 ppm in water. The calcium carbonate content of waters of various hardness is classed as:

Water hardness	mg/l
Soft	0 to 60
Moderate	61 to 120
Hard	121 to 180
Very hard	more than 180

Hardness does not cause urinary calculi.

Table 1. TDS and species variation.

Species	Total Dissolved Solids (ppm)				
	Excellent	Good	Fair	Poor	Limit
Humans	0 to 800	800 to 1,600	1,600 to 2,500	2,500 to 4,000	5,000*
Horses—working	0 to 1,000	1,000 to 2,000	2,000 to 3,000	3,000 to 5,000	6,000
Horses—others	0 to 1,000	1,000 to 2,000	2,000 to 4,000	4,000 to 6,000	10,000
Cattle	0 to 1,000	1,000 to 2,000	2,000 to 4,000	4,000 to 6,000	10,000
Sheep	0 to 1,000	1,000 to 3,000	3,000 to 6,000	6,000 to 10,000	15,000
Chickens and poultry	0 to 1,000	1,000 to 2,000	2,000 to 3,000	3,000 to 5,000	6,000
Swine	(Young pigs and market pigs appear to tolerate less than cattle)				

*The limit for drinking water in Utah is 2,000 ppm.

Source: Boyles et al. 1988.

Table 2. A guide to the use of saline waters for livestock and poultry.

Total Soluble Salts content of waters (mg/L or ppm)	Comment
Less than 1,000	These waters have a relatively low level of salinity and should present no serious burden to any livestock or poultry.
1,000 to 2,999	These waters should be satisfactory for all classes of livestock and poultry. They may cause temporary and mild diarrhea in livestock not accustomed to them, or watery droppings in poultry (especially at the higher levels), but should not affect their health or performance.
3,000 to 4,999	These waters should be satisfactory for livestock, although they may cause temporary diarrhea or be refused at first by animals not accustomed to them. They are poor waters for poultry, often causing watery feces and (at the higher levels of salinity) increased mortality and decreased growth, especially in turkeys.
5,000 to 6,999	These waters can be used with reasonable safety for dairy and beef cattle, sheep, swine, and horses. Avoid the use of those approaching the higher levels for pregnant or lactating animals. They are not acceptable waters for poultry, almost always causing some type of problem, especially near the upper limit, where reduced growth and production or increased mortality will probably occur.
7,000 to 10,000	These waters are unfit for poultry and probably for swine. Considerable risk may exist in using them for pregnant or lactating cows, horses, sheep, the young of these species, or for any animals subjected to heavy heat stress or water loss. In general, their use should be avoided, although older ruminants, horses, and even poultry and swine may subsist on them for long periods of time under conditions of low stress.
More than 10,000	The risks with these highly saline waters are so great that they cannot be recommended for use under any conditions.
More than 35,000	Brine

Source: National Academy of Sciences. 1974.

Softening the water through exchange of calcium and magnesium with sodium may cause problems if the water is already high in salinity.

pH

The pH is a measure of acidity or alkalinity. A pH of 7 is neutral, under 7 is acidic, and over 7 is alkaline. Most waters in the western states are slightly alkaline. The preferred pH is 6.0 to 8.0 for dairy animals, and from 5.5 to 8.3 for other livestock. Highly alkaline waters may cause digestive upsets, diarrhea, poor feed conversion, and reduced water/feed intake.

Sulfate

Sulfate imparts a bitter taste to the water, but animals can acclimate to it. Consider diluting high sulfate water for weanling pigs and for animals who are not accustomed to it. Table 3 shows the maximum recommended levels.

Magnesium sulfate (Epsom salt) and sodium sulfate (Glauber salt) tend to make water taste objectionable. Sulfate levels up to 1,500 ppm produce slight effects on livestock, and levels of 1,500 to 2,500 produce temporary diarrhea. When the sulfate level reaches 3,500

Table 3. Maximum recommended levels of sulfate.

Animals	ppm Sulfate (SO ₄)	ppm Sulfate as Sulfur (SO ₄ -S)
Calves	less than 500	less than 167
Adult cattle	less than 1,000	less than 333

ppm, it is unfit for sows. Water with levels above 4,500 ppm should not be used (Kober 1996).

Nitrate

Nitrate toxicity is seldom caused by a water source alone, but it may contribute to a problem feed source. The nitrate ion (NO₃⁻) itself is not especially toxic. However, nitrite (NO₂⁻) is readily absorbed and is quite toxic (10 times more than nitrate). The bacteria present in the digestive tract of ruminants and herbivores can readily convert nitrate to nitrite.

The clinical signs of nitrate poisoning in animals include lack of coordination, labored breathing, blue discoloration of mucous membranes, vomiting, and abortions. Dairy cows can have reduced milk production without showing any clinical signs. If animals show signs of nitrate poisoning or a problem is suspected, a veterinarian should be consulted to determine if nitrate is the problem, and administer an antidote if needed.

Table 4 can be used as a guide for nitrate in water but must be considered along with the forage level.

References

Boyles, S. et al. 1988. Livestock and Water. North Dakota State University, Extension Service Bulletin #AS-954.

Carson, T. L. 1993. Water Quality for Livestock. In Current Veterinary Therapy, Food Animal Practice 3. W. B. Saunders and Co., pp. 375-377.

Table 4. Nitrate content (ppm).

		Potassium Nitrate (KNO ₃)	Interpretation
Water (ppm)			
0-100	0-440	0-720	Considered safe.
100-300	440-1,300	720-2,100	Exercise caution. Consider additive effect of nitrate in feed.
> 300	> 1,300	> 2,100	Potentially toxic.
Forages (%)			
0-15%	0-0.65%	0-1%	Considered safe.
0.15-0.45%	0.65-2%	1-3%	Exercise caution. May need to dilute or limit feed forages.
> .45%	> 2%	> 3%	Potentially toxic.
Other elements			
Several other elements can contaminate water under special circumstances. These will require special tests and are usually not performed unless indications of a problem exist. Questions of cost, accuracy, and range of detection must be evaluated. Then a request should be made for the specific elements desired.			

Source: Boyles et al. 1988.

Kober, J. A. 1996. Water: The Most Limiting Nutrient. Agri-Practice 14:39-42, February.

National Academy of Sciences. 1974. Nutrients and toxic substances in water for livestock and poultry.

Water Quality Criteria. 1972. National Academy of Science—National Academy of Engineering, Environmental Study Board, ad hoc Committee on Water Quality Criteria, U.S. Gov't. Printing Office.

Issued in furtherance of cooperative extension work in agriculture and home economics, Acts of May 8 and June 30, 1914, by the Cooperative Extension Systems at the University of Arizona, University of California, Colorado State University, University of Hawaii, University of Idaho, Montana State University, University of Nevada/Reno, New Mexico State University, Oregon State University, Utah State University, Washington State University and University of Wyoming, and the U.S. Department of Agriculture cooperating. The Cooperative Extension System provides equal opportunity in education and employment on the basis of race, color, religion, national origin, gender, age, disability, or status as a Vietnam-era veteran, as required by state and federal laws.

Fourth edition; December 2016 Reprint

Conversion Factors and Tables

Table 5. Suggested limits of concentration of some potentially toxic substances in drinking water for livestock. Safe upper limit of concentration (mg/L).

Element	U.S. EPA (for humans)	U.S. EPA(for livestock)	NAS (for livestock)
Aluminum	--	5.0	--
Arsenic ^b	0.05	0.2	0.2
Barium ^c	1.0	--	NE*
Beryllium ^c	--	NE*	--
Boron	--	5.0	--
Cadmium	0.01	0.05	0.05
Chromium	0.05	1.0	1.0
Cobalt	--	1.0	1.0
Copper ^c	1.0	0.5	0.5
Fluoride	4.0/2.0 ^e	2.0	2.0
Iron ^e	0.3	no limit	NE*
Lead ^{a,b}	.005	0.1	0.1
Manganese ^e	0.05	no limit	NE*
Mercury ^c	0.002	0.001	0.01
Molybdenum	--	no limit	NE*
Nickel	--	--	1.0
Nitrate ^d	10	100	100
Nitrite ^c	--	33	33
Selenium ^a	0.01	0.05	--
Vanadium ^a	--	0.1	0.1
Zinc ^e	5.0	25.0	25.0

*Not established. Experimental data available are not sufficient to make definite recommendations.

^aLead is cumulative and problems may begin at threshold value (0.05 mg/L).

^bThe safe limit is below the lowest detectable level.

^cAnalyses available only at certain laboratories.

^dAs Nitrate-N ($\text{NO}_3\text{-N}$).

^eSecondary standard. Drinking water limits for humans are classed as primary and secondary. Primary limits are health related and are enforced by law. Secondary limits are for aesthetics and are recommendations.

Sources: Carson 1993 and Water Quality Criteria 1972.

Table 7. Nitrate and nitrite expressions and conversion. Factors for converting from one form of expression to another.

FORM A	FORM B				
	Nitrogen (N)	Nitrite (NO_2)	Potassium Nitrate (NO_3)	Nitrate (KNO_3)	Sodium Nitrate (NaN_3)
Nitrate-Nitrogen (N)	1.0	3.3	4.4	7.2	6.1
Nitrate (NO_3)	0.23	0.74	1.0	1.63	1.37
Nitrite (NO_2)	0.3	1.0	1.34	2.2	1.85
Potassium Nitrate (KNO_3)	0.14	0.64	0.61	1.0	0.84
Sodium Nitrate (NaNO_3)	0.16	0.54	0.72	1.2	1.0

To convert Form A to the equivalent amount of Form B, multiply A by the appropriate conversion factor (Form A x Conversion Factor = Form B).

Examples:

1. 1.0% Nitrate-Nitrogen (N) x 4.4 = 4.4% Nitrate (NO_3)
2. 1.0% Nitrate (NO_3) x 0.23 = 0.23% Nitrate-Nitrogen (N)
3. 1.0% KNO_3 x 0.61 = 0.61% Nitrate (NO_3)
4. 1.0% KNO_3 x 0.14 = 0.14% Nitrate-Nitrogen (N)

Table 6. Conversion factors for salinity measures.

ppm to umhos = ppm x 5/3 =	umhos/cm
umhos to ppm = umhos/cm x 3/5 =	ppm
(umhos/cm) to dS/m = (umhos/cm) x 0.001 =	dS/m (or mmhos/cm)
dS/m (or mmhos/cm) to umhos/cm = dS/m ÷ 0.001 =	umhos/cm
ppm to dS/m = ppm x 0.0017 =	dS/m
dS/m to ppm = dS/m ÷ 0.0017 =	ppm

Table 8. Conversions, equivalents, and abbreviations.

To convert Ca to CaCO_3 multiply by 2.50
To convert SO_4 to S multiply by 0.333
One U.S. gallon of water weighs 8.345 pounds
One cubic foot of water weighs 62.43 pounds
One U.S. gallon equals .13368 cubic foot
One kilogram equals 2.2 pounds
One pound equals 454 grams
One ounce equals 28.35 grams
ppm is parts per million
ppb is parts per billion
One part per million is equal to 1 mg/l
One part per million is equal to 1 mg/kg
One part per million is 0.0001 percent
One percent is 10,000 parts per million